Riemannian Submersions Riemannian Maps in Hermitian Geometry and their Applications
Download book entitled Riemannian Submersions Riemannian Maps in Hermitian Geometry and their Applications by Bayram Sahin and published by Academic Press in PDF, EPUB and Kindle. Read Riemannian Submersions Riemannian Maps in Hermitian Geometry and their Applications book directly from your devices anywhere anytime. Click Download Book button to get book file. Read some info about this book below.
- Author : Bayram Sahin
- Publisher : Academic Press
- Release : 23 January 2017
- ISBN : 9780128044100
- Page : 360 pages
- Rating : 4.5/5 from 103 voters
Riemannian Submersions Riemannian Maps in Hermitian Geometry and their Applications Book PDF summary
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore’s classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps. Systematically reviews and references modern literature in Riemannian maps Provides rigorous mathematical theory with applications Presented in an accessible reading style with motivating examples that help the reader rapidly progress
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications
- Author : Bayram Sahin
- Publisher : Academic Press
- Release Date : 2017-01-23
- ISBN : 9780128044100
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore’s classic 2004 book. In
Complex Geometry of Slant Submanifolds
- Author : Bang-Yen Chen
- Publisher : Springer Nature
- Release Date : 2022-08-19
- ISBN : 9789811600210
Differential Geometry and Global Analysis
- Author : Bang-Yen Chen,Nicholas D. Brubaker,Takashi Sakai,Bogdan D. Suceavă,Makiko Sumi Tanaka,Hiroshi Tamaru,Mihaela B. Vajiac
- Publisher : American Mathematical Society
- Release Date : 2022-04-07
- ISBN : 9781470460150
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces
Contact Geometry of Slant Submanifolds
- Author : Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Solamy
- Publisher : Springer Nature
- Release Date : 2022-06-27
- ISBN : 9789811600173
This book contains an up-to-date survey and self-contained chapters on contact slant submanifolds and geometry, authored by internationally renowned researchers. The notion of slant submanifolds was introduced by Prof. B.Y. Chen in 1990, and A. Lotta extended this notion in the framework of contact geometry in 1996. Numerous differential geometers have since obtained interesting results on contact slant submanifolds. The book gathers a wide range of topics such as warped product semi-slant submanifolds, slant submersions, semi-slant ξ┴ -, hemi-slant ξ┴ -Riemannian submersions, quasi
Manifolds II
- Author : Paul Bracken
- Publisher : BoD – Books on Demand
- Release Date : 2019-05-22
- ISBN : 9781838803094
Differential geometry is a very active field of research and has many applications to areas such as physics, in particular gravity. The chapters in this book cover a number of subjects that will be of interest to workers in these areas. It is hoped that these chapters will be able to provide a useful resource for researchers with regard to current fields of research in this important area.
Riemannian Submersions and Related Topics
- Author : Maria Falcitelli,Anna Maria Pastore,Stere Ianus?
- Publisher : World Scientific
- Release Date : 2004
- ISBN : 9789812562333
This book provides the first-ever systematic introduction to thetheory of Riemannian submersions, which was initiated by BarrettO''Neill and Alfred Gray less than four decades ago. The authorsfocus their attention on classification theorems when the total spaceand the fibres have nice geometric properties.
Pseudo-Riemannian Geometry, δ-Invariants and Applications
- Author : Bang-Yen Chen
- Publisher : World Scientific
- Release Date : 2011-03-23
- ISBN : 9789814462488
The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included. The second part of this book is on δ-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope
Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture
- Author : Peter B. Gilkey,John V Leahy,JeongHyeong Park
- Publisher : CRC Press
- Release Date : 1999-07-27
- ISBN : 0849382777
This cutting-edge, standard-setting text explores the spectral geometry of Riemannian submersions. Working for the most part with the form valued Laplacian in the class of smooth compact manifolds without boundary, the authors study the relationship-if any-between the spectrum of Dp on Y and Dp on Z, given that Dp is the p form valued Laplacian and pi: Z ® Y is a Riemannian submersion. After providing the necessary background, including basic differential geometry and a discussion of Laplace type operators, the